
CSR with ReactJS -
a case study

Deepak Parasam

A bit about myself
● Software engineering lead at SparkPost
● Interested in web development and distributed computing
● Previously worked at IBM, Amazon
● Fascinated with ReactJS!

 @deepak_pn

https://thinkerbits.com/

https://thinkerbits.com/

Overview
● CSR vs. SSR - quick recap
● Case Study - PowerMTA web monitor

○ Architecture
○ Design goals
○ Building the app
○ Limitations
○ Demo

● Q&A

CSR vs. SSR
SSR: Browser gets and renders the HTML while JS is downloaded and executed

CSR: Browser gets a pretty empty document with links to your JS

https://medium.com/walmartlabs/the-benefits-of-server-side-rendering-over-c
lient-side-rendering-5d07ff2cefe8

PowerMTA Web Monitor Architecture

MX gmail.com 172.217.9.133
MX yahoo.com 72.30.35.10

Case Study - PowerMTA Web Monitor

Design goals

● Modernize UI: rich UX for customers, and improve developer productivity
● Deployments: easy/fast

○ Runtime dependencies
○ Matters more with large # of servers

● Minimal resource footprint
○ should not impact email delivery

Concerns with CSR not significant - used in a LAN setting

 JS
1995

1990 2000 20202010

Ajax
2005

ReactJS
 2013

HTTP
 1991

SMTP
 1982

Building the app
● Create-React-App

○ Serve static assets (package.json: “homepage”: “/ui”)
■ /ui => build/index.html
■ /ui/static/* => build/static/*

○ Serve dynamic content through the REST API
○ HTTP endpoint

■ HTTP Headers: Content-Type, Content-Encoding
■ Full control over TLS support
■ https://developer.ibm.com/blogs/openssl-111-has-landed-in-nodejs-master-and-wh

y-its-important-for-nodejs-lts-releases/

● Routing with BrowserRouter
○ <Switch>
○ Unknown URL path => return build/index.html

Building the app
● Content-Security-Policy - Reduce attack vectors for XSS

○ default-src 'self'; img-src: 'self'; style-src https://fonts.googleapis.com

'self'; font-src https://fonts.gstatic.com 'self'

○ Prevent script embedding in index.html: INLINE_RUNTIME_CHUNK=false npm run build

● CORS
○ Allow (e.g. Access-Control-Allow-Origin)
○ Disallow through CSRF protection - synchronizer token pattern (e.g. csurf in nodejs)
○ “Proxy” setting in package.json

● Strict-Transport-Security and cookies with “secure” and “httpOnly” flags

Limitations
● Auth challenges

○ Stateless: Difficult to store API keys securely in the SPA
■ Local storage vulnerable to XSS

○ Stateful: Manage state on server and use cookies
■ (e.g. express-sessions, cookie-parser in NodeJS) - rfc6265

● Backend and frontend code not isomorphic

Next steps

Demo

Q&A

